机关部处 群团组织 直附属机构
岳麓书院 经济与贸易学院 金融与统计学院 法学院 马克思主义学院 教育科学研究院 体育学院 中国语言文学学院 外国语学院 资讯与传播学院 数学学院 物理与微电子科学学院 化学化工学院 生物学院 机械与运载工程学院 材料科学与工程学院 电气与信息工程学院 信息科学与工程学院 建筑学院 土木工程学院 环境科学与工程学院 工商管理学院 公共管理学院 设计艺术学院 机器人学院 经济管理研究中心 化学生物传感与计量学国家重点实验室 国家高效磨削工程技术研究中心 汽车车身先进设计制造国家重点实验室 国家电能变换与控制国家工程技术研究中心 机器人视觉感知与控制技术国家工程实验室
当前位置: 澳门新葡8455最新网站 >> 校园生活 >> 学术活动 >> 学院讲座 >> 正文
统计数据 / lectrue notice
  • 排序 学院 发文量
    1 机械与运载工程学院 208
    2 物理与微电子科学学院 208
    3 岳麓书院 184
    4 化学化工学院 178
    5 材料科学与工程学院 90
    6 数学与计量经济学院 88
    7 土木工程学院 75
    8 信息科学与工程学院 68
    9 教务处 47
    10 建筑学院 40
  • 排序 学院 发文量
    11 生物学院 40
    12 经济与贸易学院 38
    13 电气与信息工程学院 36
    14 工商管理学院 28
    15 外国语学院 15
    16 法学院 15
    17 资讯传播与影视艺术学院 9
    18 研究生院 9
    19 经济与管理研究中心 6
    20 马克思主义学院 5
    21 中国语言文学学院 4
信科院:Beyond Deep Recognition: Discovering Visual Patterns in Big Visual Data
学术地点 信息科学与工程学院542报告厅 主讲人 袁浚菘
讲座时间 2019年1月9日下午15:30—17:00

主题: Beyond Deep Recognition: Discovering Visual Patterns in Big Visual Data



报告人概况:Junsong Yuan is currently an Associate Professor and Director of Visual Computing Lab of CSE Department, State University of New York at Buffalo. Before that he was an Associate Professor at Nanyang Technological University (NTU), Singapore. He received his Ph.D. from Northwestern University. He is currently Senior Area Editor of Journal of Visual Communications and Image Representation (JVCI), Associate Editor of IEEE Trans. on Image Processing (T-IP) and IEEE Trans. on Circuits and Systems for Video Technology (T-CSVT). He was Program Co-Chair of ICME'18 and Area Chair of CVPR, ACM MM, ICIP, ICPR, ACCV, WACV etc. He received Best Paper Award from IEEE Trans. on Multimedia, Nanyang Assistant Professorship from NTU, and Outstanding EECS Ph.D. Thesis award from Northwestern University. He is a Fellow of International Association of Pattern Recognition (IAPR).


Abstract: Thanks to deep learning, many computer vision tasks nowadays are formulated as the regression problem, from high-level vision tasks such as object detection and semantic segmentation, to middle-level tasks such as structure from motion, and low-level tasks such as image matching and optical flow. Often times one has to rely on huge amounts of annotated training data to succeed in this “curve-fitting” battlefield. However, computer vision can be more than a regression problem. In this talk, I will discuss a complementary yet overlooked problem beyond visual recognition and regression: discovering visual patterns in images and videos. I will discuss our recent work of visual pattern discovery, and explore how to utilize them to better summarize, search, and interpret visual data. Applications in object instance search, object detection, action recognition, and video summarization will also be discussed.

上一条:数学院:Sarason's Ha-plitz product problems
下一条:数学院:Tutte polynomial of an Eulerian graph

XML 地图 | Sitemap 地图